
Cortex™-M3
Revision: r1p1

Technical Reference Manual
Copyright © 2005, 2006 ARM Limited. All rights reserved.
ARM DDI 0337E



Chapter 9 
Memory Protection Unit

This chapter describes the processor Memory Protection Unit (MPU). It contains the 
following sections:

• About the MPU on page 9-2

• MPU programmer’s model on page 9-3

• Interrupts and updating the MPU on page 9-19

• MPU access permissions on page 9-13

• MPU aborts on page 9-15

• Updating an MPU region on page 9-16.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 9-1



Memory Protection Unit 
9.1 About the MPU

The MPU is a component for memory protection. The processor supports the standard 
ARMv7 Protected Memory System Architecture (PMSAv7) model. The MPU provides 
full support for:

• protection regions

• overlapping protection regions

• access permissions

• exporting memory attributes to the system.

MPU mismatches and permission violations invoke the programmable-priority 
MemManage fault handler. For more information, see Memory Manage Fault Address 
Register on page 8-38.

You can use the MPU to:

• enforce privilege rules

• separate processes

• enforce access rules.
9-2 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E



Memory Protection Unit 
9.2 MPU programmer’s model

This sections describes the registers that control the MPU. It contains the following:

• Summary of the MPU registers

• Description of the MPU registers.

9.2.1 Summary of the MPU registers

Table 9-1 provides a summary of the MPU registers.

9.2.2 Description of the MPU registers

This section contains a description of the MPU registers.

MPU Type Register

Use the MPU Type Register to see how many regions the MPU supports. Read bits 
[15:8] to determine if an MPU is present.

The register address, access type, and Reset state are:

Address 0xE000ED90

Access Read-only

Table 9-1 MPU registers

Name of register Type Address Reset value Page

MPU Type Register Read Only 0xE000ED90 0x00000800 page 9-3

MPU Control Register Read/Write 0xE000ED94 0x00000000 page 9-4

MPU Region Number register Read/Write 0xE000ED98 - page 9-6

MPU Region Base Address register Read/Write 0xE000ED9C - page 9-7

MPU Region Attribute and Size register(s) Read/Write 0xE000EDA0 - page 9-8

MPU Alias 1 Region Base Address register Alias of D9C 0xE000EDA4 - page 9-11

MPU Alias 1 Region Attribute and Size register Alias of DA0 0xE000EDA8 - page 9-11

MPU Alias 2 Region Base Address register Alias of D9C 0xE000EDAC - page 9-11

MPU Alias 2 Region Attribute and Size register Alias of DA0 0xE000EDB0 - page 9-11

MPU Alias 3 Region Base Address register Alias of D9C 0xE000EDB4 - page 9-11

MPU Alias 3 Region Attribute and Size register Alias of DA0 0xE000EDB8 - page 9-11
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 9-3



Memory Protection Unit 
Reset state 0x00000800

Figure 9-1 shows the fields of the MPU Type Register.

Figure 9-1 MPU Type Register bit assignments

Table 9-2 describes the fields of the MPU Type Register. 

MPU Control Register

Use the MPU Control Register to:

• enable the MPU

• enable the default memory map (background region)

• enable the MPU when in Hard Fault, Non-maskable Interrupt (NMI), and 
FAULTMASK escalated handlers.

When the MPU is enabled, at least one region of the memory map must be enabled for 
the MPU to function unless the PRIVDEFENA bit is set. If the PRIVDEFENA bit is set 
and no regions are enabled, then only privileged code can operate.

When the MPU is disabled, the default address map is used, as if no MPU is present.

When the MPU is enabled, only the system partition and vector table loads are always 
accessible. Other areas are accessible based on regions and whether PRIVDEFENA is 
enabled.

Reserved

31 24 23 16 15 8 7 1 0

IREGION DREGION Reserved

SEPARATE

Table 9-2 MPU Type Register bit assignments

Bits Field Function

[31:24] - Reserved.

[23:16] IREGION Because the processor core uses only a unified MPU, IREGION always contains 0x00.

[15:8] DREGION Number of supported MPU regions field. DREGION contains 0x08 if the implementation 
contains an MPU indicating eight MPU regions, otherwise it contains 0x00.

[7:0] - Reserved.

[0] SEPARATE Because the processor core uses only a unified MPU, SEPARATE is always 0.
9-4 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E



Memory Protection Unit 
Unless HFNMIENA is set, the MPU is not enabled when the exception priority is –1 or 
–2. These priorities are only possible when in Hard fault, NMI, or when FAULTMASK 
is enabled. The HFNMIENA bit enables the MPU when operating with these two 
priorities.

The register address, access type, and Reset state are:

Address 0xE000ED94

Access Read/write

Reset state 0x00000000

Figure 9-2 shows the fields of the MPU Control Register.

Figure 9-2 MPU Control Register bit assignments
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 9-5



Memory Protection Unit 
Table 9-3 describes the fields of the MPU Control Register. 

MPU Region Number Register

Use the MPU Region Number Register to select which protection region is accessed. 
Then write to the MPU Region Base Address Register or the MPU Attributes and Size 
Register to configure the characteristics of the protection region.

The register address, access type, and Reset state are:

Address 0xE000ED98

Access Read/write

Reset state Unpredictable

Figure 9-3 on page 9-7 shows the fields of the MPU Region Number Register.

Table 9-3 MPU Control Register bit assignments

Bits Field Function

[31:2] - Reserved.

[2] PRIVDEFENA This bit enables the default memory map for privileged access, as a background region, when 
the MPU is enabled. The background region acts as if it was region number 1 before any 
settable regions. Any region that is set up overlays this default map, and overrides it. 

If this bit = 0, the default memory map is disabled, and memory not covered by a region 
faults.

When the MPU is enabled and PRIVDEFENA is enabled, the default memory map is as 
described in Chapter 4 Memory Map. This applies to memory type, Execute Never (XN), 
cache and shareable rules. However, this only applies to privileged mode (fetch and data 
access). User mode code faults unless a region has been set up for its code and data. 

When the MPU is disabled, the default map acts on both privileged and user mode code.

XN and SO rules always apply to the System partition whether this enable is set or not. 

If the MPU is disabled, this bit is ignored.

Reset clears the PRIVDEFENA bit.

[1] HFNMIENA This bit enables the MPU when in Hard Fault, NMI, and FAULTMASK escalated handlers. 
If this bit = 1 and the ENABLE bit = 1, the MPU is enabled when in these handlers. If this 
bit = 0, the MPU is disabled when in these handlers, regardless of the value of ENABLE. If 
this bit =1 and ENABLE = 0, behavior is Unpredictable.

Reset clears the HFNMIENA bit.

[0] ENABLE MPU enable bit:

1 = enable MPU

0 = disable MPU.

Reset clears the ENABLE bit.
9-6 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E



Memory Protection Unit 
Figure 9-3 MPU Region Number Register bit assignments

Table 9-4 describes the fields of the MPU Region Number Register. 

MPU Region Base Address Register

Use the MPU Region Base Address Register to write the base address of a region. The 
Region Base Address Register also contains a REGION field that you can use to 
override the REGION field in the MPU Region Number Register, if the VALID bit is 
set.

The Region Base Address register sets the base for the region. It is aligned by the size. 
So, a 64-KB sized region must be aligned on a multiple of 64KB, for example, 
0x00010000 or 0x00020000.

The region always reads back as the current MPU region number. VALID always reads 
back as 0. Writing with VALID = 1 and REGION = n changes the region number to n. 
This is a short-hand way to write the MPU Region Number Register.

This register is Unpredictable if accessed other than as a word.

The register address, access type, and Reset state are:

Address 0xE000ED9C

Access Read/write

Reset state Unpredictable

Figure 9-4 on page 9-8 shows the fields of the MPU Region Base Address Register.

Reserved

31 8 7 0

REGION

Table 9-4 MPU Region Number Register bit assignments

Bits Field Function

[31:8] - Reserved.

[7:0] REGION Region select field. Selects the region to operate on when using the Region Attribute and Size 
Register and the Region Base Address Register. It must be written first except when the address 
VALID + REGION fields are written, which overwrites this.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 9-7



Memory Protection Unit 
Figure 9-4 MPU Region Base Address Register bit assignments

Table 9-5 describes the fields of the MPU Region Base Address Register. 

MPU Region Attribute and Size Register

Use the MPU Region Attribute and Size Register to control the MPU access 
permissions. The register is made up of two part registers, each of halfword size. These 
can be accessed using the individual size, or they can both be simultaneously accessed 
using a word operation.

The sub-region disable bits are Unpredictable for region sizes of 32 bytes, 64 bytes, and 
128 bytes.

The register address, access type, and Reset state are:

Address 0xE000EDA0

Access Read/write

Reset state Unpredictable

Figure 9-5 on page 9-9 shows the fields of the MPU Region Attribute and Size Register. 

31 0

ADDR REGION

4 3

VALID

N

Table 9-5 MPU Region Base Address Register bit assignments

Bits Field Function

[31:N] ADDR Region base address field. The value of N depends on the region size, so that the base address is 
aligned according to an even multiple of size. The power of 2 size specified by the SZENABLE field 
of the MPU Region Attribute and Size Register defines how many bits of base address are used.

[4] VALID MPU Region Number valid bit:

1 = MPU Region Number Register is overwritten by bits 3:0 (the REGION value).

0 = MPU Region Number Register remains unchanged and is interpreted.

[3:0] REGION MPU region override field.
9-8 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E



Memory Protection Unit 
Figure 9-5 MPU Region Attribute and Size Register bit assignments

Table 9-6 describes the fields of the MPU Region Attribute and Size Register. For more 
information, see MPU access permissions on page 9-13.

Table 9-6 MPU Region Attribute and Size Register bit assignments

Bits Field Function

[31:29] - Reserved.

[28] XN Instruction access disable bit:

1 = disable instruction fetches

0 = enable instruction fetches.

[27] - Reserved.

[26:24] AP Data access permission field:

Value Privileged 
permissions

User 
permissions

b000

b001

b010

b011

b100

b101

b110

b111

No access

Read/write

Read/write 
Read/write

Reserved

Read-only

Read-only

Read-only.

No access

No access

Read-only

Read/write

Reserved

No access

Read-only

Read-only.

[23:22] - Reserved.

[21:19] TEX Type extension field.

[18] S Shareable bit:

1 = shareable

0 = not shareable.

[17] C Cacheable bit:

1 = cacheable

0 = not cacheable.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 9-9



Memory Protection Unit 
For information about access permission, see MPU access permissions on page 9-13.

[16] B Bufferable bit:

1 = bufferable

0 = not bufferable.

[15:8] SRD Sub-Region Disable (SRD) field. Setting an SRD bit disables the corresponding sub-region. 
Regions are split into eight equal-sized sub-regions. Sub-regions are not supported for 
region sizes of 128 bytes and less. For more information, see Sub-Regions on page 9-12.

[7:6] - Reserved.

[5:1] SIZE MPU Protection Region Size Field. See Table 9-7.

[0] ENABLE Region enable bit.

Table 9-6 MPU Region Attribute and Size Register bit assignments (continued)

Bits Field Function

Table 9-7 MPU protection region size field

Region Size

b00000 Reserved

b00001 Reserved

b00010 Reserved

b00011 Reserved

b00100 32B

b00101 64B

b00110 128B

b00111 256B

b01000 512B

b01001 1KB

b01010 2KB

b01011 4KB

b01100 8KB

b01101 16KB
9-10 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E



Memory Protection Unit 
9.2.3 Accessing the MPU using the alias registers

You can optimize the loading speed of the MPU registers using register aliasing. There 
are three sets of Nested Vectored Interrupt Controller (NVIC) alias registers. These are 
described in NVIC register descriptions on page 8-7.

The aliases access the registers in exactly the same way, and they exist to enable the use 
of sequential writes (STM) to update between one and four regions. This is used when 
disable/change/enable is not required.

b01110 32KB

b01111 64KB

b10000 128KB

b10001 256KB

b10010 512KB

b10011 1MB

b10100 2MB

b10101 4MB

b10110 8MB

b10111 16MB

b11000 32MB

b11001 64MB

b11010 128MB

b11011 256MB

b11100 512MB

b11101 1GB

b11110 2GB

b11111 4GB

Table 9-7 MPU protection region size field (continued)

Region Size
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 9-11



Memory Protection Unit 
You cannot use these aliases to read the contents of the regions because the region 
number must be written.

An example code sequence for updating four regions is

; R1 = 4 region pairs from process control block (8 words)
MOV R0, #NVIC_BASE
ADD R0, #MPU_REG_CTRL
LDM R1, [R2-R9] ; load region information for 4 regions
STM R0, [R2-R9] ; update all 4 regions at once

Note
 You can normally use the memcpy() function in a C/C++ compiler for this sequence. 
However, you must verify that the compiler uses word transfers.

9.2.4 Sub-Regions

The eight Sub-Region Disable (SRD) bits of the Region Attribute and Size Register 
divide a region into eight equal-sized units based on the region size. This enables 
selectively disabling some of the 1/8th sub-regions. The least significant bit affects the 
first 1/8th sub-region, and the most significant bits affects the last 1/8th sub-region. A 
disabled sub-region enables any other region overlapping that range to be matched 
instead. If no other region overlaps the sub-region, the default behavior is used, no 
match – a fault. Sub-regions cannot be used with the three smallest regions of size: 32, 
64, and 128. If these sub-regions are used, the results are Unpredictable.

Example of SRD use

Two regions with the same base address overlap. One region is 64KB, and the other is 
512KB. The bottom 64KB of the 512KB region is disabled so that the attributes from 
the 64KB apply. This is achieved by setting SRD for the 512KB region to b11111110. 
9-12 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E



Memory Protection Unit 
9.3 MPU access permissions

This section describes the MPU access permissions. The access permission bits, TEX, 
C, B, AP, and XN, of the Region Access Control Register (see MPU Region Attribute 
and Size Register on page 9-8) control access to the corresponding memory region. If 
an access is made to an area of memory without the required permissions, then a 
permission fault is raised.

Table 9-8 describes the TEX, C, and B encoding.

Note
 In Table 9-8, S is the S bit [2] from the MPU Region Attributes and Size Register.

Table 9-8 TEX, C, B encoding

TEX C B Description Memory type Region shareability

b000 0 0 Strongly ordered. Strongly ordered Shareable

b000 0 1 Shared device. Device Shareable

b000 1 0 Outer and inner write-through. No write allocate. Normal S

b000 1 1 Outer and inner write-back. No write allocate. Normal S

b001 0 0 Outer and inner noncacheable. Normal S

b001 0 1 Reserved. Reserved Reserved

b001 1 0 Implementation-defined.

b001 1 1 Outer and inner write-back. Write and read allocate. Normal S

b010 0 0 Nonshared device. Device Not shareable

b010 0 1 Reserved. Reserved Reserved

b010 1 X Reserved. Reserved Reserved

b1BB A A Cached memory BB = outer policy.

AA = inner policy.

Normal S
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 9-13



Memory Protection Unit 
Table 9-9 describes the cache policy for memory attribute encoding.

Note
 All cache policies presented by HPROT and MEMATTR relate to an outer cache.

Table 9-10 describes the AP encoding. 

Table 9-11 describes the XN encoding.

Table 9-9 Cache policy for memory attribute encoding

Memory attribute encoding (AA and BB) Cache policy

00 Non-cacheable

01 Write back, write and read allocate

10 Write through, no write allocate

11 Write back, no write allocate

Table 9-10 AP encoding

AP[2:0] Privileged permissions User permissions Descriptions

000 No access No access All accesses generate a permission fault

001 Read/write No access Privileged access only

010 Read/write Read only Writes in user mode generate a permission fault

011 Read/write Read/write Full access

100 Unpredictable Unpredictable Reserved

101 Read only No access Privileged read only

110 Read only Read only Privileged/user read only

111 Read only Read only Privileged/user read only

Table 9-11 XN encoding

XN Description

0 All instruction fetches enabled

1 No instruction fetches enabled
9-14 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E



Memory Protection Unit 
9.4 MPU aborts

For information about MPU aborts, see Memory Manage Fault Address Register on 
page 8-38.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 9-15



Memory Protection Unit 
9.5 Updating an MPU region

There are three registers consisting of three memory mapped words that program the 
MPU regions. These are part registers that you can individually program and access. 
This means that you can port existing ARMv6, ARMv7, and CP15 code. This replaces 
MRC and MCR with LDRx and STRx operations.

You can also access these registers as three words, and program them using only two 
words. Aliases are provided to enable programming a set of regions simultaneously 
using an STM instruction.

9.5.1 Updating an MPU region using CP15 equivalent code

Using CP15 equivalent code:

; R1 = region number
; R2 = size/enable
; R3 = attributes
; R4 = address
MOV R0,#NVIC_BASE 
ADD R0,#MPU_REG_CTRL 
STR R1,[R0,#0]; region number
STR R4,[R0,#4]; address 
STRHR2,[R0,#8]; size and enable
STRHR3,[R0,#10]; attributes

Note
 If interrupts could pre-empt during this period, this region could affect them. This 
means that the region must be disabled, written, and then enabled. This is usually not 
necessary for a context switcher, but would be necessary if updated elsewhere.

; R1 = region number
; R2 = size/enable
; R3 = attributes
; R4 = address
MOV R0,#NVIC_BASE 
ADD R0,#MPU_REG_CTRL 
STR R1,[R0,#0]; region number
BIC R2,R2, #1; disable
STRHR2,[R0,#8]; size and enable
STR R4,[R0,#4]; address 
STRHR3,[R0,#10]; attributes
ORR R2,#1 ; enable
STRHR2,[R0,#8]; size and enable
9-16 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E



Memory Protection Unit 
DMB/DSB is not necessary because the Private Peripheral Bus is a strongly ordered 
memory area. However, a DSB is necessary before the effect on the MPU takes place, 
such as the end of a context switcher.

An ISB is necessary if the code that programs the MPU region or regions is entered 
using a branch or call. If the code is entered using a return from exception, or by taking 
an exception, then an ISB is not necessary.

9.5.2 Updating an MPU region using two or three words

You can program directly using two or three words, depending on how the information 
is divided:

; R1 = region number
; R2 = address
; R3 = size, attributes in one
MOV R0,#NVIC_BASE 
ADD R0,#MPU_REG_CTRL 
STR R1,[R0,#0]; region number
STR R2,[R0,#4]; address
STR R3,[R0,#8]; size, attributes

An STM can optimize this:

; R1 = region number
; R2 = address
; R3 = size, attributes in one
MOV R0,#NVIC_BASE 
ADD R0,#MPU_REG_CTRL 
STM R0,{R1-R3}; region number, address, size, and attributes

You can do this in two words for pre-packed information. This means that the base 
address register contains the region number in addition to a region-valid bit. This is 
useful when the data is statically packed, for example in a boot list or a Process Control 
Block (PCB).

; R1 = address and region number in one
; R2 = size and attributes in one
MOV R0,#NVIC_BASE 
ADD R0,#MPU_REG_CTRL 
STR R1,[R0,#4]; address and region number
STR R2,[R0,#8]; size and attributes

An STM can optimize this:

; R1 = address and region number in one
; R2 = size and attributes in one
MOV R0,#NVIC_BASE 
ADD R0,#MPU_REG_CTRL 
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 9-17



Memory Protection Unit 
STM R0,{R1-R2}; address, region number, size

For information about interrupts and updating the MPU, see Interrupts and updating the 
MPU on page 9-19. 
9-18 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E



Memory Protection Unit 
9.6 Interrupts and updating the MPU

An MPU region can contain critical data. This is because it takes more than one bus 
transaction to update. This is normally two words. As a result, it is not thread safe. That 
is, an interrupt can split the two words, leaving the region with incoherent information. 
There are two different issues:

• An interrupt can come in that would also update the MPU. This is not only a 
read-modify-write issue, it also affects cases where the interrupt routine is 
guaranteed not to modify the same region. This is because the programming relies 
on the region number being written into a register so that it knows which region 
to update. So in this case, you must disable interrupts around each update routine.

• An interrupt can come in that would use the region being updated or would be 
affected because only the base or size fields had been updated. If the new size field 
is changed, but the base is not, the base+new_size might overlap into an area 
normally handled by another region. In this case, the disable-modify-enable 
approach is required.

But for standard OS context switch code, which would change user regions, there is no 
risk, because these regions would be preset to user privilege and a user area address. 
This means that even an interrupt would cause no side effect. Therefore the 
disable/enable code is not required nor is interrupt disable.

The most common approach is to only program the MPU from boot code and context 
switcher. If these are the only two places, and the context switcher is only updating user 
regions, then disable is not required because the context switcher is already a critical 
region and the boot code runs with interrupts disabled.
ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 9-19


